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Abstract

In many practical applications of nanotechnology and in microelectromechanical devices, typical structural compo-
nents are in the form of beams, plates, shells and membranes. When the scale of such components is very small, the
material microstructural lengths become important and strain gradient elasticity can provide useful material modelling.
In addition, small scale beams and bars can be used as test specimens for measuring the lengths that enter the consti-
tutive equations of gradient elasticity. It is then useful to be able to apply approximate solutions for the extension, shear
and flexure of slender bodies. Such approach requires the existence of some form of the Saint-Venant principle. The
present work presents a statement of the Saint-Venant principle in the context of linear strain gradient elasticity. A rec-
iprocity theorem analogous to Betti’s theorem in classic elasticity is provided first, together with necessary restrictions
on the constitutive equations and the body forces. It is shown that the order of magnitude of displacements are in
accord with the Sternberg’s statement of the Saint-Venant principle. The cases of stretching, shearing and bending
of a beam were examined in detail, using two-dimensional finite elements. The numerical examples confirmed the the-
oretical results.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Nanocomposites as well as macro-composites such as concrete and fiber-reinforced composites are typ-
ical materials that at very small volumes can be modelled by strain gradient type of constitutive equations.
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In many practical applications of nanotechnology and in microelectromechanical devices, typical structural
components are in the form of beams, plates, shells and membranes (e.g. actuators and sensors). In such
cases, material microstructural lengths become important and strain gradient elasticity can provide useful
material modelling. Two major obstacles to a wider application of strain gradient elasticity are the lack of
information about the material constants that are used in the constitutive equations and the complexity of
the general theories involved. Regarding the first obstacle, static experiments can be designed based on slen-
der structural configurations (e.g. cantilever and three-point bending tests). Regarding the second obstacle,
engineering type of theories that account for strain gradient effects (e.g. Papargyri-Beskou et al., 2003,
Tsepoura et al., 2002) have appeared and require the assurance of the Saint-Venant principle regarding
loading and dimensions.

A detailed formulation and the general proof of Saint-Venant’s principle in the context of linear elastic-
ity were given by Sternberg (1954). Based on this general approach, Naghdi (1960) presented the Saint-
Venant principle in the context of the linear theory of thin elastic shells and plates. A thorough review
of methodologies and results related to Saint-Venant’s principle can be found in the work of Horgan
and Knowles (1983). The Saint-Venant principle was extended by Berglund (1977) to micropolar solids
and was investigated numerically (in two-dimensions) by Nakamura and Lakes (1995). The general exten-
sion of the Saint-Venant principle in the context of the linear strain gradient elasticity (which includes as a
special case the micropolar elasticity) seems to be lacking. Yet, the principle is tacitly assumed in a plethora
of cases where microbeams, microplates and micromembranes model microelectromechanical systems
(MEMS).

In classical elasticity, the proof of the Saint-Venant principle follows from Betti’s reciprocal theorem,
Sternberg (1954). Obviously, a general form of the reciprocal theorem has to be stated for the liner
strain-gradient elasticity as well. In this context, we have to mention the work of Polyzos et al. (2003)
who proved a reciprocal identity for a specific constitutive form of an isotropic, linear elastic solid with
microstructure. As Boley (1958) pointed out, the linear ellipticity of the problem may imply integral repre-
sentation of the displacements through the fundamental solution of the controlling linear differential equa-
tions and therefore the validity of Saint-Venant principle. The explicit fundamental solution for the
displacements of a general isotropic linear elastic strain-gradient solid can be found in the work of Mindlin
(1964).

The paper is structured as follows. First, the reciprocity theorem is stated in a general form, within the
general constitutive framework of Mindlin’s theory, Mindlin (1964). Particular forms for isotropy are also
discussed. The Saint-Venant principle is established by appropriate Taylor expansion of the surface tractions
and double stresses around fixed points on the surface. As side results of the reciprocity theorem, the
Castigliano theorems are also derived. The exponential decay of the energy density along a slender beam
with equilibrated loads at one end is estimated. Using the finite element method, we performed numerical
investigations of stretching, shearing and bending of a beam, modelled as a two dimensional plane strain
solid. The paper concludes with the assessment of the approximate strain-gradient beam theories.

2. Reciprocity theorem for linear strain-gradient elasticity

The theoretical proofs that follow are based on the Type II formulation of strain gradient elasticity,
established by Mindlin (1964). We will use Cartesian coordinates, x;(i = 1,2, 3), with the usual summation
of repeated Latin indices from 1 to 3 and of repeated Greek indices from 1 to 2. The starting point is the
virtual work statement. We assume a kinematically admissible field of virtual displacements, u;, that obeys
prescribed boundary conditions on part of the surface S of an elastic body of volume V-

w =ud (1)
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and

ou* . ou?

Note that n; is the unit normal vector to the surface that points outside the body and the comma denotes
partial differentiation with respect to the coordinate indicated by the index that follows. The small strain

tensor, ¢/, corresponds to the kinematically admissible displacement field and is given by

€= (], +1)/2 G)

The Cauchy stresses, 7;; and the double stresses, 1%, obey the equilibrium equations, which in the presence
of body forces F; and body double forces @;;, are

(Tji = Mjise — Pir) ; + Fi =0 (4)
The assumption of a strain energy density W(e, €x,,,) imply:
ow ow
Tij = Tji = @7 Hijre = Higg = —aejk,i (5)
The surface tractions, P;, are related to 7; and p; through the relations
P = "j(sz‘ — Hyjik — (pj') - [Dj - (Dp”p)nj] (”k#kﬁ) (6)
where D; is the surface gradient operator
0 0
Di = i~ 7
e ()
The double stresses produce boundary conditions of the type
Ri = menjpuy; (8)

In case of non-smooth boundaries along lines C, with tangent unit vector s;, the surface jump stresses across
these lines are

E; = Hl/’nk/v‘kjiH 9)

where [; = e;;.5;1 (e is the Levi-Civita permutation symbol). For smooth surfaces, E; = 0. For plane prob-
lems, the lines C, are actually corner points.
In case when @; # 0, we cannot establish a general reciprocal form and we will further assume that

(I)ﬂThg'Cauchy and double stresses satisfy prescribed dynamic boundary conditions
P, =P (10)
R =R° (11)
E =E (12)

For each direction x;, the above dynamic conditions apply on the surface S of the body so that: for the part
of S where condition (10) holds, condition (1) does not apply and for the part of S where condition (11)
holds, condition (2) does not apply.

The virtual work statement is

out
/(fijEZJfﬂuk%*-kf)dV:/Ffu,-*dV+/ <Pz-u2‘+R,- a”’>d5+27{ Eq; dS (13)
v ’ v s n - Jc,
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Assuming a linear elastic energy potential, Mindlin (1964), the general forms of the constitutive equations
are

Tpg = Cpgij€ij + g€k (14)
Hpgr = Qpgrik€ii + Fparij€ij (15)

In the above forms, the elastic constants c;; = cxs; have the usual symmetries of the pairs (i,7) and (k.,/),
with dimension [N/mz]. The elastic constants @;,jx = @ik, have additional symmetries of the pairs (7, k)
and (m,n), with dimension [N]. The additional material constants fjj, = fixjm have additional symmetries
of the pair (/,m), with dimension [N/m]. Obviously, microstructural lengths can be incorporated in @y,
and surface energies in fj;,,. It can be shown that a reciprocal theorem can be stated only if £, = 0 (wWhich
is always true for isotropic solids) and we will further assume it is so.

Due to the symmetries of the remaining constants (c,g;; @pgriji), it can be shown that

* * * . *
Tij€i; = Ti€ijs M€ = M€k (16)
where
* * * — *
Tij = Cijki €y Hpmn = Qmnijk€jy i (17)

From tj; and 4, we can define P, R, E7 and F7, using Egs. (6), (8), (9) and (4), respectively (i.e., the stat-
ically admissible generalized tractions). Then, Eq. (13) can be casted in the form

Ou,
/(Tfje,—,+u;‘jkejk7i)dV: /Ffu,—dV—{—/ <P;‘u,-+R:f ”>d5+2j§ Efu;ds (18)
v ) 4 s On = Jc,

where u; are the displacements that corresponds to ¢; (rigid body displacements are excluded).
Combining Egs. (13), (18) and (16), we obtain the following reciprocity form:

/VFluldV+/S (Pﬂ/li +R,E>ds+ s fé,aEiuidS
* * *aui *
_/VFl.u,-dV—i—/S (P,.u,-—i—R[ 6n>ds+ Ea f;’Eiu,—ds (19)

We emphasize again the importance of the requirement fj;;,, = 0, a natural fact for the isotropic response
(see Appendix A for a summary of isotropic constitutive equations). Assuming a priori fj;, =0 and
@; =0, Eq. (19) can be proven directly, using the divergence theorem. '

For smooth boundaries, Eq. (19) simplifies to

out Qu:
/F,»u;‘dV—i—/ (P,-u;‘—l—Ri ul)dS:/F:.‘uidV—i—/ (Pjuiﬁ—Rfﬁ)dS (20a)
1% K an v s 6}’[

and in the absence of body forces

/ <Pl~u;‘ 4+ R, 2 > ds = / (P;u,. R a”") ds (20b)
N on S on

Egs. (19) and (20) agree with the particular results of Polyzos et al. (2003). In the case of classic elasticity,
Wix = 0 and Eq. (20b) becomes the familiar Betti’s reciprocal form (Love, 1927),

/medV—!—/(n;q;)udez/F;‘u,-dV—i-/(n,-rjfi)u[dS (21)
v S 14 N ’

! The authors are grateful to one of the reviewers that brought this to our attention.
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3. Castigliano’s theorems

A side result of the reciprocity theorem is the Castigliano identities, of particular use in statically inde-
terminate structures. Starting from Eq. (13), we assume that F; = 0 and E; = 0 and take as virtual displace-
ments the differentials of the actual displacements, that is ] = du;. Then, Eq. (13) becomes

/(Ti.fdei.f + ,u[jkdejk,i) dv = / |:P, dui + R,d (%)} ds (22)
4

N

Remembering that the analysis is in the context of small deformations, the first term of Eq. (22) is actually
the total differential of the elastic energy U and so

dUE/deV:/ [P,-du,-+R,-d<%>}dS (23)
v s on

We consider now the case where a number of concentrated generalized forces and double forces are applied
on the surface of the body, i.e.,

N M
P(x) = ZP(”)p(’”é(x —x™) and R(x)= ZR(’”)I‘(’">5(X — xm) (24)
n=1 m=1
where M and N is the number concentrated generalized forces and double forces, respectively, d(x) is the
Dirac-delta function, p™ and r' are unit vectors that define the direction of the forces, P and R"™ are
the corresponding magnitudes, and x”” and x” are the corresponding points of application. When these
loads are used in (23), the result is

dU = S° po gy 1+ N~ g g (24 )
U:ZI:P u +Z;R o (25a)

(m)

where 4 = u(x")-p™ and 1™ = u(x") 1", i.e., " and 4" are the components of the displacements in
the direction of the applied loads at their points of application.

If we consider the elastic energy as a function of the displacements and their normal derivatives at the
points of application of the concentrated loads,

1) (M)
then we conclude from (24b) that
oU oU
P — d RW—=—_"~ 25
oum 3(0u™ /on) (25

which are the forms of Castigliano’s first theorem.
Provided we can invert uniquely Eqs. (14) and (15) and express €; = €;{Ti1), €pn.q = €mn,q(Hprs)> the com-
plementary strain energy density is

. 1
W'(Tijv Haam) = B (Tijfij + Mgt €htm) (26)

Assume F; =0 and E; = 0 and take 7j; = dt;; and p; = dp;, that is the differentials of the actual Cauchy
stresses and double stresses. Then Eq. (18) becomes

N
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The first term of Eq. (27) is the total differential of the complementary elastic energy and so
Ou;
dUcz/dW"’dV:/ (u,dP M dR)dS (28a)
Vv N
Following similar arguments to those which led to Eq. (25b) and assuming now that
U= U(PY,...,PY;RY, . RM) we conclude that

w_ QU aue
u’ =_—= A T -
aP(n) on aR(m)

which are the forms of Castigliano’s second theorem.

(28b)

4. The Saint-Venant principle for linear strain-gradient elastic bodies
4.1. Integral representation for surface displacements and their normal derivatives

Focusing on bodies with smooth boundaries and ignoring body forces, we can specify P; and R} in such
a way so that the reciprocity relation yields general expressions for the values of displacements and their
normal derivatives on the surface of the elastic body.

At a point x° on the surface, we can select local orthogonal coordinates (¢1,¢,) that span a region of
small radius e around x° (subsurface S.). Assume

* 5 i
P =K only on S, and R;=0onS (29)

! me?

where Jy, is the delta of Kronecker. In the limit € — 0,

Ou;
*(k * i _ 0
/S( u+R 5 )ds_/& —5dS = w(x") (30)

Similarly we can select

W o
Ri(l) :_[’2 Only on Se and Pz* =0onsS <31)
e

In the limit € — 0,

. 1) Ou; Ou; 1 Quy
/S<Piui+R a)dS [ as — 21 () (32)

on met

With the above selections of P; and R}, the reciprocal form (20b) gives

w(k
i (x°) = /S <P uf® agn )> ds (33)

for the selection of (29), and

duy " a*”)
an % ):/S< ! on )ds (34)

for the selection of (31). Note that in Eq. (33), the displacements uf(k) are the results of the applied loads
given by (29). In Eq. (34), the displacements u; “() are the results of the applied loads %wen by (31). The lin-
earity of the constitutive equations permits superposition in cases we have both P and Rf(”
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It should be noted that the above results can be obtained alternatively, by specifying the unit point loads
as Pi¥ (x) = 0;,6(x — x°) and R/ (x) = 8,,0(x — x°).

4.2. Sternberg’s statement of the Saint-Venant principle

Consider the Taylor expansion of the displacements u; about the surface point x°, with respect to the
surface orthogonal coordinates (&, £,) defined in the previous section. Then, from Eq. (33) we have

o w0 ™ ™ o "
w(x) = u " (x )/SP,-dS—kF(X )/SR,-dS—i— B (x )/SP,-éde—kaéa o (x )/SR,C“dS

+ Higer Order Terms (35)
Similarly, we can formulate the corresponding Taylor expansion of the normal derivative of the displace-
ments Ou;/On, using Eq. (34). The conditions for the existence of the above expansions are implied.

If P, and R; are bounded, then we have the following cases regarding the order of magnitude of u; and
Ou;/on, as € — 0:

(a) If [;P;dS # 0 and/or [;R;dS # 0, then

u¥(x%) = 0() and 6;?1‘) (x°) = O(€?) or smaller (36)
(b) If fSP,dS = fSRldS = 0, then
. ou®
u™(x*) =0() and 676 (x°) = O(¢?) or smaller (37)

This case corresponds to no resultant load.

(¢) If [(P;dS = [(R;dS = [(P;{,dS = [(R;{,dS =0, then
ou®
2e,
This case corresponds to self equilibrated load.

(d) Astatic equilibrium is defined when the applied generalized tractions (P; and R;) are parallel and
remain in self equilibrium under an arbitrary change of the coordinate system. In such case:

au’f(k)

¢,
The above results can be extended to the case of applied concentrated forces and moments, double
forces and double moments (i.e P*(x) = 6u0(x — x°) and R\ (x) = 6,6(x — x")). Then, the orders
of magnitude found above [O(€%), O(€®), O(e*)] are replaced with [O(1), O(e), O(¢?)], respectively. Note
that these results are in accord with Sternberg’s results for classical elasticity.

u®(x%) = 0(¢*) and (x°) = O(€*) or smaller (38)

uP(x°) = O(e*)  and (x°) = O(e*) (39)

The requirement of vanishing € in the case of infinite bodies (e.g. half-space) may be regarded as equiv-
alent to keeping the area of the load region fixed while the distances of the material points tend to infinity.
For beams where we apply loads at the ends, € is actually H/L, where H is the beam’s height and 2L is the
beam’s length.

If both the surface tractions and double stresses are confined to several distinct portions of its surface,
each lying within a part of the surface of radius ¢, then the displacements are of a smaller order of magni-
tude in € when both the surface tractions and double stresses are self equilibrated than when they are not.
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Thus, we can only state the relative orders of magnitude and not the extend of the region which is influ-
enced. Rigorous comparisons would require the knowledge of the details of the load intensities rather than
the load resultants. In the following, we will present examples that will quantify the previous theoretical
results.

5. Energy decay along a slender beam
5.1. Energy decay inequality

In this section we approach the Saint-Venant principle using an energy decay inequality in the spirit of
Toupin (1965). We use Type I strain-gradient formulation, according to Mindlin (1964). The potential
energy density can be stated as

1 1 1 1

W (€pgs Ug.rp) = = CpgimEpg€im + zdrpqﬂm”q,rpumd'/ = zququ + Emrpq“q‘rp (40)

2

where 1,, = 1,4, = OW/0e,, is the str.ess tensor conjugate to e; aqd Mypy = My = OW[0uy,, is the dipo!ar
stress tensor conjugate to u,,,. The internal energy U of a body with volume " and smooth surface S (with
unit outward normal vector 7;), in the absence of body forces, is

1 1 ~ ~
U= / wdv = /[n,,(rpq — Mypg Uy + MMty ] AS = = / (Pquq + unqﬁpn,)>dS (41)
v 2 s 2 Js

where P, = n;(1;, — myqes) — [D; — (Dyn,)n,|(mimy,) and R, = nnemy,. Consider a cylinder, as in Fig. 1,
with rounded edges, loaded by P and R only on 4 and in such a way that

/ﬁquzo and /Taquzo (42a)
Ao 4y

and
P,=0 and R, =0 (42b)

on the rest of the surface of the cylinder. To avoid the complications from the jump relations, we assume
rounded edges (£, = 0).

Let A4, be the intersection of the cylinder with a plane perpendicular to the generators of the cylinder at a
distance s from A, and ¥V be the volume between section A, and the right end of the beam. The plane is
slightly rounded close to the cylindrical surface. Since the loads are balanced at section Ay, overall equilib-

4 4
’ _ ch\ / {:‘
7Y
!
\\

—>ds«—

FS—’

Fig. 1. The cylinder configuration used for the elastic energy decay problem. Self equilibrated loads act at one end (s = 0) and the rest
of the surface has no load.
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rium of V requires that the loads are balanced at section 4, as well, i.e. equations similar to (42a) hold on
A,. Following Toupin (1965), we define the modified displacement field u(x)

p(X) = p(X) + @ + bpyx, (43)

which includes a rigid body translation a, and a rigid body rotation 2e;; v, where b; = —bj;. Since rigid
body motions do no work on the applied loads and taking into consideration (41)—(42b), we can write
the internal energy in Vj as

1 ~ o~
U(s) = 3 /A (Pquq + unqypnp> d4 (44)

At this point we make use of the Schwartz and Geometric-Arithmetic mean inequalities to assert that
(Toupin, 1965, Appendix A)

/ulwldVgl(a/u,u,dV+l/W,w,dV> (453)
v 2 v o« Jy

for all o > 0 and all vector fields u(x) and w(x). Using this inequality in Eq. (44), we find

~ 1
P,P,dS +— / iy AS + ( /RandS+—/ Uy gl dS> 45b
/A x Auu Z B, Asuqu# (45b)

for all positive constants o, ff1, >, f3. It should be noted that given any two vectors, say P, and n;t;,, we
can always find a positive constant y such that the magnitude of yn;t;, is larger than that of P, i.e.,

1
<
U(s)\4

If;mf)m < ’ynjr_/'mnkrkm
Also, using the methodology of Toupin (1965, Appendix B), we can show that there exist two positive con-
stants cs and dj, (e.g. the maximum positive eigenvalues of ¢,q,, and g, respectively, if grouped as
matrices) such that

ﬁnﬁn < VI T jm M T g ZVCMW (45C)
and (see also Berglund, 1977, p. 320)

knkn = n/nkmjkn npnqmpqn < njmjkn npmpkn < 2dMI/V (45d)

Using (45¢) and (45d) in (45b), we conclude that

1
U(s) <= A {Z[aycM + (B + By + B3)du] / WdS+oc / iy, dS + Z / u,,,,u,“,dS} (46)

A

Integrating the above inequalities in the volume V. of the beam region between the two sections at s and
s + ds, we obtain

s+ds 1 1 3 1
/ U(s*)ds* < =< 2[loyerr + (By + By + B3)du] / wdv 4+ - / Uity AV + Z — / Uy gy g dV
s 4 Ve % Sy pry B, Jv.,.
(47)

Assuming that the displacements and their derivatives are bounded in the beam, we can select the constants
B, so that

st Z/ln 11/1,, 1 dar wa Ijlnyzljlnvz dv

fr=o Sy, Tnalina &V
fV umude 2 fVS( amljlde 9

b= * Syttt dV

By = (48)
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Next, we use the methodology of Toupin (1965) to obtain an upper bound for [, y. Untty AV It follows from
Rayleigh’s principle that, for a proper choice of the rigidbody-displacement constants a; and by,

2
Py

1
/ i dV < — | wdv (49)
Ve sc

where p is the mass density of the elastic body and wq the lowest characteristic frequency of free vibration of
the part of the body included in V. We note that w, can be found from the solution of the eigenvalue
problem

(rgy — mﬁ’;;r) + pojul) =0 (no sum over k) (50)

with zero loads on the boundary of V.. In Eq (50), u ) is the kth eigenfunction. The stresses r ) and m
can be obtained from the displacements uq ) through the constitutive equations.

The inequality (47), together with (48) and (49) can be stated as
s+ds 1
[ ueas <3 men+ (84 B2+ )

} / wdv (51)
Following Berglund (1977), we define
d W} (52)

0 = max |:'))CM, M

and
h = 53
(o,0) = oo + 2P (53)
Then, Eq. (51) implies
s+ds
/ U(s")ds” < h / WAV = hU(s) — U(s + ds)) (54a)
A VSC
Since U(s) is a positive and non-increasing function of s, we have that
s+ds
U(s +ds)ds < / U(s")ds” (54b)
Therefore, using (54a), we conclude that
U(s +ds)ds < h[U(s) — U(s + ds)] (54c)
In the limit ds — 0, the last inequality implies that
dUu
—h— 4
U< & (54d)
Integrating the last inequality from 0 to s, we conclude that
Uls) < U©O)exp -5 (4c)

The minimum value of & with respect to « is

minh =2 iz when o = % (55)
pw} oGP}
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Inequality (54e) provides an upper bound for the elastic strain energy

U(s) < U(0)exp |~ (56)

min h}
In the above expression, U(0) is the internal energy of the whole beam and U(s) is the portion of the energy
stored in the part of the beam between the right, load-free, end-section and the cross section at a distance s
from the loaded left end. Inequality (56) is similar to the well-known exponential decay of the elastic energy
found in classic elasticity (Toupin, 1965) and in micropolar media (Berglund, 1977). Note that pw] can be
considered as the square of the characteristic frequency of a section of the cylinder with unit mass density.
Therefore, the rate of the exponential decay of the elastic energy is determined by the material constants
and the geometry of the beam.

5.2. Example: Slender beam

Fig. 2 shows a plane strain beam of length L. The thickness of the beam is H(H < L) and the coordinates
(x1,x,) are at the loaded end of the beam (self-equilibrated), so that L < x; <0 and —H/2 < x, < H/2. We
will use the simplest constitutive Eqgs. (A.1), (A.2), (A.5), given in Appendix A. For a slice of a beam at a
distance x; = s, we assume u, = u»(X,) and the eigenvalue problem (50) becomes

2. (k) 4 (k) 2
T pQta P9 _ (57)
0x3 0x5 E

where E is the elastic modulus and / is the microstructural length of the beam. The only boundary condition
that is not satisfied trivially is

~ ou o uld H
k k k
PY =) —mly, =E axzz —EP aé =0 atn =% (58)
A long wave eigen-solution of the above, one-dimensional, free vibration problem is
2 2 / 2
u(zm —sin 22 and P20 (£> 1+ (= (59a)
H E H H

In this case ¢y, ~ E and d,; ~ EF. Using the choice (59a), we compute /35(” Joa = (n/H)’. The corresponding
7)) and P\ are
2 2

U(S) K
mi;l h s=
X2
X, E, 1l
H
l H/2

Fig. 2. The plane strain beam used for the arguments of the elastic energy exponential decay.
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) = ET =— Ccos—- (59b)

and
~ oul) o*ul nl\?
P(O) =F 2 7E12 2 1 - (0) 59
2 Ox, ox3 \a) | (59¢)
In most practical cases 0 < I/H < 1/n = 0.318; therefore 1350) < 212), and
PUPY < 4700 (59d)
ie., »” =4 in this case.

If we accept the /)’(20) and y'” values as representative, then the corresponding estimates for o and / are
N’ H
4E, (”) E
H

. 4
0 = max =4F and minh=- —— (60)
The exponential decay rate of the elastic energy is increasing with the microstructural length /

T\ + (nl/H)

U(s) < Upexp | — (61)

6. Numerical examples and comparisons with analytical results

Quantitative evaluation of the Saint-Venant principle would require full solutions of key problems such
as bending, axial loading and shearing of beams. Classic elasticity has dealt with such problems using the-
oretical solutions, e.g. Filon (1903). In the case of strain-gradient elasticity, beam solutions already exist for
particular cases of constitutive equations and loading, Koiter (1964), Papargyri-Beskou et al. (2003) and
Tsepoura et al. (2002).

In the present work, we solved two-dimensional plane strain problems using the finite element method.
We examined in particular the simplest isotropic strain-gradient model with explicit constitutive forms
given in Appendix A (Egs. (A.1), (A.2), (A.5)). Although simple, the fore-mentioned constitutive model
is less satisfactory in complex cases such as crack-tip fields.

A novel finite element was used that was developed by Amanatidou and Aravas (2002) together with the
ABAQUS (2003) general purpose finite element code. It is a plane-strain, nine-node, mixed element with

=
g xL 1_,
P A ‘—_ A —;"/z P A
¥ A4 4l B |l
—> >
o P P/2
E P
A A [/
B L ) @ ®3) @

Fig. 3. Half of a rectangular block of material with length 2L and height H, with rounded corners. The coordinate system (xi, x,) is
indicated (plain strain). The four loading cases applied at the vicinity of point A are shown. Also shown is the 32 x 16, 9-noded finite
element mesh used in the calculations of the vertical displacement at point B. (L = 0.008 m, H = 0.04m, ¢ =0.25x 107> m, P = 1 GN/
m, E=85GPa, v=0.26,/=0.16 x 107> m).
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independent isoparametric interpolation for the displacements u;, their tangent derivatives u; ; — u; yn; and
their third derivatives u; ;;. The element has two displacements and four tangent derivatives, as degrees of
freedom at each of the nine nodes of the element. In addition the element has one third order derivative as
degree of freedom at each of the four corner nodes of the element. Therefore, each element has a total of 70
degrees of freedom with bi-quadratic Lagrangian interpolation for u; and u;; — u; ;i; and bilinear inter-
polation for u; ;. A patch of at least 2 x 2 elements was found to have none zero eigenvalue.

We considered a rectangular block of material with length 2L, height H, and rounded corners (E; = 0).
Fig. 3 shows one half of the block. Loads were applied near point A (x; = L,x, =0) and its symmetric
point (x; = —L,x, = 0) with respect to the x, axis. Along the symmetry line x; =0, u; =0 and u,; = 0.
At the origin (x; = 0,x, = 0)u, = 0, to eliminate any rigid body motion in the x, direction. The four loading
cases are shown in Fig. 3. The first case corresponds to a non-zero resultant force; in the second case the
resultant force vanishes; in the third and fourth cases the forces are in astatic equilibrium. The radius of
roundness and the distance that defines the location of the applied loads near point A were equal to one
element side e. The 32 x 16 finite element mesh (e = H/16) with the type of elements mentioned above is
also shown in Fig. 3. The calculations were carried out for L/H =2, I/H = 0.04 (/ is the microstructural
length), Young’s modulus E = 85 GPa and Poisson ratio v = 0.26. These properties relate to those of
marble, Vardoulakis et al. (1998).

We define the dimensionless quantity v = u,(B)E/P, where uy(B) is the x, displacement of point B
(x; = —H/2, x, = 0),P is the total applied load per unit of out-of-plane thickness. The calculated values
of v for the four types of loading (i =1,2,3,4, as in Fig. 3) are

PV =163 x107", 5P =6.03x1072, *& =184x10", *W =-105x10"*

PR
p‘%%‘s (E,v,]) H]

P2
(a) 2L

——1=0.0016m

- 1=0.054m

0 02 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
(b) s/H

Fig. 4. (a) Configuration used for elastic energy decay problem (plane-strain, 2L = H = 10). At one end acts a self equilibrated
load (indicated by load case (3) in Fig. 3) and the other end is free. A uniform mesh of 8 x 80, 9-noded elements was used (element
size 1/8 m) with microstructural lengths //H =0.0016 and //H = 0.054. (b) Normalized energy U(s)/U(0) versus normalized axial
distance s/H.
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If we identify € = ¢/H = 0.0625, then it is clear that the following inequalities hold:
0(1*?) < O(a® M), OW*®) < O(v®V) O@WPW) < O(PV)

thus verifying the aforementioned “Saint-Venant principle”. For L/H = 4, the results for v®" and v re-
main almost the same, whereas v®® = —7.68 x 10~°, which means that away from the loaded-end there is
practically no deformation. This is expected since loading case (3) gives no force and no moment resultant
on the surface. For completeness we state the corresponding results for the classic elastic case (/ = 0).

PO =164 %107, 5P =615%x1072, *& =196x%x10"", *@ =_-144x10"*

The results confirm that the strain gradient elasticity predicts stiffer response than the classic elasticity.

2.5E-02
2.0E-02
1.5E-02 -
u;[m]
1.0E-02
-&-1=0.0016
- 1=0.054
5.0E-03 >1=0.108
--1=0.027
. al -©-1=0.27
0.0E+00 B T T T T T T T
0 001 002 003 004 005 006 007 008
(a) X [m]
3.0E-03
2.0E-03 p
1.0E-03
u, [m] —--1=0
0.0E+00 - -£-1=0.0016
-A-1=0.054
>1=0.108
-1.0E-03 - 1=0.027
-o-1=0.27
'20E'03 T L T T L Ll L
000 001 002 003 004 005 006 007 008
(b) X [m]

Fig. 5. (a) The displacement u; along the side x, = —H/2 for loading case 1 of Fig. 3 (uniaxial tension, / = 0,0.027, 0.054,0.108 m, beam
prediction max u; = 0.022 m). (b) The displacement u, along the side x, = —H/2 for loading case 1 of Fig. 3 (uniaxial tension, /=0,
0.027, 0.054, 0.108 m, beam prediction u, = —0.0019 m).
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To investigate the energy decay along a slender beam, we analyzed a beam with 2L/H = 10 under self
equilibrated forces, as shown in Fig. 4a. A uniform mesh of 8 x 80 elements was used (element size 1/
8 m) with microstructural lengths //H = 0.0016 and //H = 0.054. The normalized numerical results of
Ul(s)/U(0) versus s/H are plotted in Fig. 4b. The numerical results are in accord with our theoretical finding
that the energy decays faster with increasing microstructural length.

6.1. The plane-strain uniaxial tension problem

To investigate the influence of the size of the microstructural length /, we examined the uniaxial tension
(described in Fig. 3 as case 1) for 2L = 0.16 m and / = 0,0.027, 0.054, 0.108 m. Fig. 5a shows the u, displace-
ments along the side x, = —H/2 and Fig. 5b shows the u, displacements along the same side. Tsepoura et al.
(2002) have solved the uniaxial tension problem and adjusting their analytical results we obtain

P(1—?) B v P(1—-v)H
7HE X1, uz(xl) = 7T N B (62)

() = (1—v) HE 2

It is clear that the end effect erodes the above approximation. We note that increasing the microstructural
length, the region of validity of the homogeneous solution increases, in accord with the theoretical
prediction.

6.2. The plain strain three-point bending problem

Next, we solved the two-dimensional three-point bending problem (plain strain, out-of-plane dimension
Im). The configuration and loading are indicated in Fig. 6. Due to symmetry, we modelled one half of the
beam. The mesh layout is shown in Fig. 3.

The finite element results for P = 49 kN/m, H = 0.1 m and 2L = 0.4 m are shown in Fig. 7. The vertical
deformation u,(x;) of the middle-line is shown in Fig. 7a. Plots of the axial strain distribution €;;(x;) at
locations x;/L = 0,0.2,0.2,0.3 for the classic case / = 0 m are shown in Fig. 7b. Plots of the axial strain dis-
tribution €;,(x») at locations x;/L =0, 0.1,0.2,0.3 for a microstructural length /= 0.054 m are shown in
Fig. 7c. Similar results for P = 792.5 kN/m, H = 0.04 m and 2L = 0.16 m are shown in Fig. 8. It is clear
that the strain gradient analysis predicts a stiffer response, as expected. Using the bending theory of
Papargyri-Beskou et al. (2003), Giannakopoulos and Stamoulis (in preparation) predict the deflection of
the midsection of the beam to be

H

X ZT % |
PR | PR

L ) L

Fig. 6. Configuration used for the three-point bending analysis (plane-strain, 2L/H = 4). Material constants: E = 85 GPa, v =0.26
and /=0.054 or /=0 m. The finite element mesh is shown in Fig. 3. (a) P = 31.7 kN/m with 2L = 0.4 m, (b) P = 4.9 kN/m with
2L =0.16 m.
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Fig. 7. The finite element results for the three-point bending described in Fig. 6 with P =49 kN/m, H=0.1 m and 2L = 0.4 m.
(a) Vertical deformation u(x) of the middleline x, = H/2. (b) Axial strain distribution €;1(x;) at locations x;/L = 0,0.2,0.2,0.3 (case
/=0m). (c) Axial strain distribution €;;(x») at locations x;/L = 0,0.2,0.2,0.3 (case / = 0.054 m).
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Fig. 8. The finite element results for the three-point bending described in Fig. 6 with P = 792.5 kN/m, H =0.04 m and 2L = 0.16 m.
(a) Vertical deformation u(x;) of the middle-line x, = H/2. (b) Axial strain distribution €;;(x;) at locations x;/L = 0,0.2,0.2,0.3 (case
[=0m). (c) Axial strain distribution €;;(x») at locations x;/L = 0,0.2,0.2,0.3 (case / = 0.054 m).
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ur(x; = 0) = 76EF—£ {% - (£>2 (cosh <§) + coslll B +% tanh (%) - 1)
(5 (s (5) 7 s () son (1)) )

Note that Eq. (63) predicts the classic result in the limit / — 0
2P’
EH’

The end deflection is decreasing monotonically with //L, predicting a stiffer response. Using (64), we predict

u(0)=—0.92x 10" m for P=49kN/m, H=0.1m and 2L =04m and uy(0)=—1.49x10"*m for

P =792.5kN/m, H=0.04m and 2L = 0.16 m. These results compare very well with the finite element

computations, shown in Figs. 7a and 8a, respectively. For / = 0.054 m, Eq. (63) predicts that the deflection

at the beam’s center is 2.2 and 6.4 times smaller than the ones predicted by the classic elasticity, for the cases
shown in Figs. 7 and 8, respectively. The finite elements predict factors of 5 and 7 for the corresponding

cases. Therefore, the estimate of Eq. (63) is useful for slender beams (2L/H > 4).

The finite element analysis indicates that the Bernoulli-beam assumption of linear variation of the axial
strains €;; is reasonable, however, €;; # kx,. Therefore, the small “punch effect” (the perturbation of the
normal strains by an axial tensile strain at the midspan) predicted by Timoshenko and Goodier (1970) for
the classic case (/ = 0), appears to be pronounced and non-local for the gradient case (! # 0). Classic elas-
ticity predicts a maximum shift of the neutral axis of 0.17H, localized at the center of the beam. The gra-
dient elasticity predicts a shift of the neutral axis along the whole length of the beam. This newly discovered
“punch effect” seems to increase with the ratio //H and could bring most of the beam into tensile straining.
Thus, we can conclude that the Bernoulli-beam assumption requires 2L/H > 4 and H/I>> 2. The first
restriction is well known from classic elasticity. The last restriction is novel and is due to the strain gradient
model of the beam.

(v = 0) = (I —0) (64)

7. Conclusions

Nano- and microelectromechanical devices use extensively structural components in the form of
beams, plates, shells and membranes. In such cases, the material microstructural lengths become impor-
tant and strain gradient elasticity can provide useful material modelling. The range of applications can
extend to large scales, whenever materials can be modelled with gradient elasticity, for example fiber
composites and concrete. The approximate solutions of problems of extension, torsion and flexure of
slender bodies rely on the Saint-Venant principle. The present work investigated the validity of Saint-
Venant’s principle in the context of the linear strain gradient elasticity. A reciprocity theorem analogous
to Betti’s theorem was proven first, suggesting constitutive restrictions that preclude surface terms and
body double-forces in the formulation. As a side result, the powerful Castigliano’s theorems were
obtained. It was shown that the order of magnitude of the displacements are in accord with a Sternberg’s
statement of the Saint-Venant principle. In addition, an exponential decay for the elastic energy was
found valid for a prismatic beam with self-equilibrated loaded ends. It was found that the energy decay
becomes stronger with increasing microstructural length. The cases of stretching, shearing and bending of
a beam were examined in detail, using a novel finite element methodology. The numerical results con-
firmed the theoretical findings. Regarding the bending of beams, it was found that the usual assumption
of the Bernoulli beam theory is invalid for cases where the microstructural length is more than half of the
beam’s thickness.



A.E. Giannakopoulos et al. | International Journal of Solids and Structures 43 (2006) 3875-3894 3893
Acknowledgements

The work is part of the project of “Fatigue of MEMS” that is ongoing in the Laboratory for Strength of
Materials and Micromechanics of the Department of Civil Engineering, University of Thessaly. We would
like to thank Prof. H. Georgiadis of the National Technical University of Athens for bringing to our atten-
tion the unpublished reciprocity form and Castigliano’s theorems that his group found for the isotropic
case, in full accord with our general results.

Appendix A. Isotropic material response
According to Mindlin (1964), the most general form of a Type I, isotropic constitutive law is
Ty = Adyen + 2pe; (A1)
gy = %al (OpgKrii + 204 Kiip + OrpKyii)
+ 2020 4K pii + a3(Opgiciir + Oprtcisg) + 204K pgr + A5(Kypg + Kgrp) (A.2)

where K = €; ;,0;; is Kronecker’s delta, (ay,a,,a3,a4,as) are material constants and A, pu are the familiar
Lame’s constants that are connected with the elastic modulus £ and the Poisson’s ration v by

E vE

YU R s g vy g

Necessary and sufficient conditions for positive definiteness of the potential energy density, leading to un-
ique solutions, are

©>0, 31+2u>0
6_11 > 0, —31 < 6_112 < 31 (A3)
(le>0, 3&1+2&2>0, f>0

where
184, = —2a; + 4a + a3 + 6a4 — 3as
18d, = 2a, — 4ay — as
3a; =2(ay + ax + a3) (A4)
a = ap, + as
Sf =a; +4a, — 2az

A simpler isotropic constitutive model which is used extensively (e.g. Ru and Aifantis (1993) and Georgi-
adis et al. (2004)), when expressed in Mindlin’s framework, results in

ay=as=as=0, ay=1"u a =152 (A.5)
where / is a microstructural length (x> 0,1 > 0).

Another simple isotropic case can be formulated to model the couple-stress constitutive equations of
Koiter (1964), resulting in



3894 A.E. Giannakopoulos et al. | International Journal of Solids and Structures 43 (2006) 3875-3894

ay=dul’, ay=a3=—ay, ay=2ul’(1+n) =—as (A-6)

where 5 is a dimensionless constant (—1 <# <1).
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